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Abstract 

Starting from finite difference equations of motion for the longitudinal phase 
*pace coordinates ($0, W) = (4 - &&, [E - Esync~]/~syn~) one can derive dif- 
ferential equations of motion which represent the same physical system except 
that the force from the rf is distributed uniformly over the full azimuth of the 
synchrotron. Because the difference equations are essentially free of kinematic 
or dynamic approximations, the resulting differential equations contain a more 
complete description of the dynamics than those usually employed. They may 
be used, for example, at or near the transition energy or for particles far from 
the synchronous energy. A brief discussion comparing these equations to the 
conventional ones is offered in conclusion. 

Introduction 

The complete description of the single-particle motion of beam particles in a syn- 
chrotron requires specifying a trajectory in a six-dimensional space with time or, 
perhaps position around the ring, as a parameter. However, because transverse fo- 
cusing for beam containment is typically N 10s times stronger than the phase focusing 
provided by the accelerating rf field, the characteristic frequencies of transverse and 
longitudinal oscillations differ by a factor N 104. Therefore, a small change in longi- 
tudinal coordinates occurs over many periods of the transverse oscillation, and only 
average properties of transverse potential have significant effect on what happens in 
the longitudinal coordinates. So, while it is certainly possible to write equations of 
motion starting from the general Hamiltonian for a charged particle in an electro- 
magnetic field,[l] it is not generally done. The transverse and longitudinal motion 
are considered separately from the start; the choice of coordinates and momenta is 
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specialized for convenience in the regime of practical accelerators. There are avail- 
able many derivations in this vein of differential equations appropriate to bunched 
beams.[21[31[41 Th ey are written in various forms; a common one, and one common 
to the cited references, is popular because it is Hamilton’s equations for a simple 
Hamiltonian, viz., 

2 
$ = SW 0) 

G= f$ [si=( ‘p + 4.) - si=( &)I , (2) 

where ‘p is phase relative to the synchronous particle and W is the energy difference 
divided by the synchronous angular frequency w. = hilt.. Several approximations are 
needed to derive these equations, but they are sometimes considered “exact through- 
out the acceleration ~ycle.“[~l The standard treatments assume that the interesting 
regime is oscillatory motion of beam particles with respect to the trajectory of the syn- 
chronous particle. However, in accelerators and especially in some storage rings there 
are other important types of longitudinal motion. Examples include adiabatic cap- 
ture, phase displacement, moving bucket capture, off-energy injection, slip stacking,L51 
and many more. 

In a previous note@1 the equations of longitudinal motion were derived as difference 
equations. For the purposes of numerical simulation of beam behavior, difference 
equations are a desirable mathematical framework because they translate immediately 
into arithmetic operations. It is also true, however, that difference equations are to 
be preferred conceptually because the rf force is applied impulsively at localized rf 
gaps so that the particle receives a finite energy increment followed by a finite &free 
drift. The difference step is taken as the time or phase between successive gaps. 
In the cited note the difference equations are written without recourse to kinematic 
or dynamic approximation. Thus, they are suitable as a step in the derivation of 
differential equations more general than eqs. 1 and 2. 

The equations from ref. [6] are 

‘Pi,?2 = *pj,n--l + 2rh(Si,, - 1) (3) 
w.,n-1 

wi,, = =w+-> + ~mpi,n + Lx) - V(4,,*)1 . (4) 
a,, w.,, 

These equations may be understood without the explicit definition of every quantity 
by the following statements: 

i refers to a particle of interest. 
B refers to the synchronous particle. 
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n refers to the n-th circulation around the ring ended by the n-th energy 
kick. 
The rf frequency is h times the circulation frequency of the synchronous 
particle; h is an integer. 
w = hR = hvJR. 
r$ is the phase of the rf at the time the particle passes the gap. 

pi=&-?L 
W = (Ei - E,)/w., where the E’s are total energy. 
S; = w./wi is the phase slip per turn. 

They can be read as a map M of the point (~i,n-l, W;,,-1) to another point(vpi,,,, Wi,,,) 
in the ‘p - W plane. The map is area preserving as one can determine from a direct 
calculation of the Jacobian derivative 

J(M) = qLPi,n, W,n) * cy-V’ 
a(Pi,n-lt wi,n-I) = 2rh& z + $V’Zxhe E ’ ’ (5) 

In ref. [6] the role of the small amount of betatron acceleration occurring in a 
synchrotron is discussed. Its influence is shown to be very small, and an argument 
given by DhmeL31 1s cited to justify ignoring it in practice. However, contrary to 
that discussion and in distinction to DSme’s treatment one can evaluate the betatron 
acceleration consistently in the finite difference framework. Before deriving the dif- 
ferential equations it is demonstrated in the next section that the correct difference 
equations have no explicit betatron acceleration term. 

Betatron Acceleration 

The per-turn betatron acceleration contribution to the difference pi,” = Ei,, -E,,, 
between the energy of particle i and the synchronous particle is 

6(%+, = --e 
! 

Ij,(ri,, - T.,,) dr de , 

where the polar cylindrical coordinates have their origin at the center of the ring and 
the integration extends over the area between the orbits. Throughout the following 
the operator 6 denotes the difference between the same quantity on successive turns 
and the operator A denotes the difference between corresponding quantities for par- 
ticle i and particle s on the same turn. Turns have differing periods for different 
particles, so a A difference is not an equal-time difference. The evaluation of 6(a) is 
shown in detail to make the implicit assumptions evident. 
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Writing the radial separation of the orbits in terms of the dispersion D and the 
momentum difference, 

6(P& = e-e 

! 

!?!!?5! 
a& a 

at 

Arr,dlI = -,++- at D(e)?. de (7) 
P. 

Momentum and magnetic field are related by 

1p.l = I. . (8) 

Therefore, 

- (B,,,) = T(;) = T&f F = z . (9) 

Use this result in eq. 7 to get the & factor out of the integral: 

6(%+ = --e 
a(&.) AP 

‘(;;“)R,~jD(B)dB =--e at, R.-(2~a,R.) 
P. 

= --e Wz,.) at Z?rR.AR (10) 

as one would write immediately for a model of the ring with an azimuthally uniform 
magnetic field. From the magnetic field vs. momentum relation eq. 9, 

and 

a(&,.) dR. 
8R * x + (Pd& 1 , 

PA - 1 L’(B,,.) + -- 
P. (B,,,) at 

The term in square brackets is related to the momentum compaction c+ byL2] 

R. V-L) + 1 = 1 
(Bz,.) a& I a, 

(11) 

02) 

(13) 

so that 
PA - 1 a(&,.) I 1 k -- 
p, (B,,,) at a, R, 

(14) 

and 

“f;) = (B,,,) [i _ $$I . (15) 
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Replacing the & term in eq. 10 with this last expression one finds 

s(%;,, = -~(B*,,~[~-~~]27R.AR= [aPE-$]2AR 

= [cQ,; - $1 ZnR,Ap 

The Ap throughout the course of the n-th turn is 

Ap = v.AE = v.ci,,,-1 (17) 

so that 

6%+ = 2~R.,nci,,-1 

~.,?I 
[%;-$1 =%+@$+~,,~, . (18) 

For any credible rate of change the time derivatives of synchronous momentum and 
radius are represented to very high accuracy by the difference quotients 

Therefore, 

P. ’ = 6p.17. 

Ii, = bR,/r. . (19) 

6@%i,, = CY~ j-+ri,n-l= [g-g+,dl . (20) 

This result does not mean that there is no betatron acceleration. Rather it means 
that, if eV(qS.) is set to 6E. with betatron contribution included, there is no explicit 
contribution of the betatron acceleration to the difference between the synchronous 
and neighboring particles. This might be thought of as renormalizing I$. to replace 
the betatron acceleration by an equivalent amount of rf acceleration. Note, however, 
that this result is only as good as the approximation of differences between quantities 
for particle i and particle s by first order differentials. Therefore, it is less general than 
the difference equations themselves. One should bear in mind that for some atypical 
situation it could be appropriate to carry along the explicit betatron acceleration 
contribution even though it would undoubtedly be small in a synchrotron. 

The Differential Equations 

With the exception of the caveat from the previous section, eqs. 3 and 4 are 
equations of longitudinal motion essentially without approximation. Rewrite them 
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with 6’s as 

6Wis= = (~-l)+~[V(“,.+“~,.)-V(“,,dl . 
(22) 

The plan is to make time derivatives from the lefthand sides of these equations by 
dividing by the synchronous circulation period r,,,. However, one could certainly 
object that the finite approximation does not represent the differential beyond first 
order. Therefore, the equations will be generalized slightly to the case of N equally 
spaced cavities per turn, each having voltage V/N, all phased to cSa,,,, and separated by 
drifts of equal average dispersion. The iteration of the map will now take the particle 
from one cavity to the next so that n is no longer the turn index. The differential 
equations will be obtained by distributing the rf smoothly around the ring, i. e., 
by taking in classical fashion 1imN ---t co. This may or may not be a physically 
important approximation, but one should note that it is an approximation; the real 
equations of motion are the difference equations. For the N cavities, 

boi,n = (~-l)~~,,-l+~(s.,,-1) (23) 

6W;e = (5 - 1) Wiga- + &[V(P+ + 4a,n) - V(4,,)] (24) 

Dividing both equations by the interval r,+/N one gets 

$$f = $ (~-l)~i."-l+w'."(si,.-l) 

3 = ~(~-l)~,“-l+~[v(W1”+~~,.)-v(~.,.)j . 

Now the time interval is arbitrary because N is arbitrary. Therefore, exactly, 

. . 
di = NL’zk 

{ 
_1I_ 
r.,, wa,,(l _6w6L;:,,,w,,,)(Pi+-l + w4n(sio- - l)} 

= zipi + W.(Si - 1) 

kvi = Limit 
N+CC . I 

N 6wv Win-1 + e 
r.,n %,?I 

~P%G,n + 4%) - V(A,rL)l 

= -w’wi + 
w. 

&w’p’ + a- V(4.N , 
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where the 7~ subscript gets dropped to indicate that the variables are continuous in 
the limit. 

The differential equations have been derived from an area-preserving map M. If 
all has gone well in the derivation, the differential map dM for the transformation 
(p, W) --t (p + dp, W + dW) in time dt 

9% -vo = dp = [$po + w.(S - I)] dt 

WI-W0 = dW= -w’W,+ 
[ . w. 

&[v(w + 4.) - J’(4.)1] dt 

should also be area preserving. The Jacobian is 

J(dM) = a($%, WI) = I+ %dt sdt 
a($&, Wo) w,$$dt 1 - %dt = 1 - ‘(cdt)‘) . (31) 

The discrepancy in J is of higher order than the precision of the differential map, but 
neglecting the order in which p and W are incremented results in no cancelation of 
the off-diagonal elements in the determinant. 

If the &,/w. terms were absent in eqs. 29 and 30, the Jacobian would be still be 
one to O(dt). These terms are required to preserve the phase space area in the finite 
mapping; they cancel to O(dt) in the Jacobian for the differential mapping but fail to 
cancel to U((dt)‘) because the terms depending on the order of the mapping steps are 
missing from the off-diagonal elements. The implication is that there is a Hamiltonian 
which contains a term to generate the Ga/~. terms in the differential equations and 
an approximate Hamiltonian which does not. We can write the Hamiltonian for eqs. 
27 and 28 formally as 

H(I+-I, W) = co. lw[S(w) - l] du, - eV zrhv(lp + 44 - f(b) - ~pf@.)l + ~PW , (32) 

where the potential is written as Vg(+) and f’(d) = g. Although the equations 
derived from eq. 32 omitting the bilinear term are canonical equations of motion, 
the complete Hamiltonian is more faithful to the physical system. There may be 
circumstances in which this term is not negligible. Making H an explicit function of 
W depends on expanding 

s-l=l+AR/R-l 
1 +WlP ’ (33) 

One can identify two kinds of non-linearity, viz., kinematic from expanding the de- 
nominator and lattice non-linearity from the dependance of AR/R on Ap/p. Either 

7 



or both can be negligible depending on the parameter domain of interest. Of course 
for calculation one can evaluate S = fl,/Sl exactly. For high p it is reasonable to take 
only the first order Ap/p term in the denominator so that 

S-l= 
1+cxo~~;~~~)2+-~~1 . 

P 

If one can ignore lattice non-linearity also, one finds with a0 = 7;” that 

(34) 

(35) 

One arrives at eqs. 1 and 2 by neglecting the small Gj./w. terms also. 

Conclusion 

Differential equations of motion for the longitudinal coordinates in a synchrotron 
have been developed here which are more accurate (complete) than those found 
generally in standard sources. A treatment similar to this one has been given by 
Takayama171 as part of a discussion of the dynamics near transition; various approx- 
imations he makes would be inappropriate in other circumstances. The derivation 
has been carried out with typical assumptions. Thus, a limitation to a system with 
an explicitly time-independent Hamiltonian has meant that certain contributions fre- 
quently of practical importance were not even considered, contributions for example 
from c and &. These terms do not fit into the usual Hamiltonian formulation but 
can be derived easily from difference equations in the fashion employed in this note. 
The dominant theme here has been to isolate where the usual approximations are 
made and to indicate how they can be removed if necessary. 

As one might expect from the examination of a topic frequently revisited, there 
is little in this treatment which is truly novel. However, the emphasis is different, 
and the use of difference equations free of differential approximations makes possible 
a systematic identification of error terms. The reader’s attention has been drawn to 
C./w, terms in the differential equations which are commonly neglected. The betatron 
acceleration contribution has been reexamined with a finite difference approach to 
establish the validity of the underlying difference equations. It may be that the 
Hamiltonian eq. 32 is novel at least in its explicit form. 
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